Enrollment No: Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Linear Algebra - I

Subject Code: 4SC03LIA1 Branch: B.Sc. (Mathematics)

Semester: 3 Date: 25/04/2022 Time: 02:30 To 05:30 Marks: 70

- **Instructions:**
 - (1) Use of Programmable calculator & any other electronic instrument is prohibited.
 - (2) Instructions written on main answer book are strictly to be obeyed.
 - (3) Draw neat diagrams and figures (if necessary) at right places.
 - (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

- True of False: Union of two subspace of vector space V(F) is also subspace of (01)V(F).
- Is the set of all real numbers forms vector space over a field of complex (01)numbers? Yes or No?
- Are vectors $v_1 = (1,0,0), v_2 = (0,2,0), v_3 = (0,0,3)$ linearly independent? Yes (01)
- If transformation $T: \mathbb{R}^2 \to \mathbb{R}$ define by T(x, y) = (x + y, x y) then (01)**d**) T(1,2) =____
 - (a) (3,-1) (b) (-1,3)(c) (2,2)(d) (-2, -2)
- Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y) = (y,x) then (01)*T* is ____.
 - (a) One-one (b) Onto (c) Both (d) None of these
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a one-to-one linear transformation then the dimension of (01)ker(T) is ?
- 0 (d) (c) Define: linearly dependent and linearly independent set of vectors in vector (02)space V.
- Define: subspace of vector space. (02)h)
- Define: linear transformation from vector space V(F) to U(F). (02)
- **j**) If u = (1,2,3) and v = (2,1,4) then find $\langle u, v \rangle$. (02)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

- Show that the vector v = (-1,1,10) is a linear combination of vectors (05) $v_1 = (1,0,1), v_2 = (-2,3,-2), v_3 = (-6,7,5).$
- Show that the intersection of two subspace of vector space V is also subspace of **b**) (05)
- Find cosine angle between u = (1,2) and v = (0,1), also verify Cauchy-(04)Schwarz Inequality.

Q-3		Attempt all questions	(14)
	a)	Prove that a non-empty subset W of vector space $V(F)$ is subspace of $V(F)$ if	(06)
		and only if $\alpha u + \beta v \in W \ \forall u, v \in W \ and \ \forall \ \alpha, \beta \in F$.	
	b)	If S is non-empty subset of vector space $V(F)$ then prove that span of S is subspace of vector space $V(F)$.	(04)
	c)	Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by	(04)
	,	$T(x,y) = (2x - 3y, x + 4.5x_2)$ is not linear transformation.	` /
Q-4		Attempt all questions	(14)
	a)	Check whether the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T: (x, y) = (x + y, x - y)$ is linear or not?	(05)
	b)	Check whether the set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ is a basis for R^3 ?	(05)
	c)	Show that the set $S = \{v_1, v_2, v_3\}$ where $v_1 = (2,1,1), v_2 = (1,2,2), v_3 = (1,1,1)$ is linearly dependent set.	(04)
Q-5		Attempt all questions	(14)
	a)	If V and W are two vector spaces over field F and $T: V \to W$ is linear transformation then show that $Ker(T)$ is subspace of V .	(05)
	b)	Prove that $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ is an inner product space on R^2 where $u = (u_1, v_1), v = (v_1, v_2) \in R^2$.	(05)
	c)	If $u = (u_1, u_2)$, $v = (v_1, v_2)$ are two vectors in R^2 then show that the R^2 is inner product space with respect to the inner product defined as $\langle u, v \rangle = 4u_1v_1 + u_2v_1 + 4u_1v_2 + 4u_2v_2$.	(04)
Q-6		Attempt all questions	(14)
	a)	If $T: V \to W$ be a linear transformation then show that $Range(T)$ is subspace of W .	(05)
	b)	Which of the following are linear transformation?	(05)
		$(i)T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T(x,y) = x^2$	
		(ii) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (2x - y + z, y - 4z)$.	
	c)	Prove that $\langle u, v \rangle = u_1v_1 - u_1v_2 + 4u_2v_1 + 4u_2v_2$ is an inner product space on \mathbb{R}^2 .	(04)
Q-7		Attempt all questions	(14)
	a)	State and prove Rank-nullity theorem.	(07)
	b)	Show that the vectors $u = (2,2,0), v = (3,0,2), w = (2,-2,2)$ forms a basis for R^3 .	(07)
Q-8		Attempt all questions	(14)
	a)	let V be a vector space and $S = \{v_1, v_2, v_3, \dots v_k\}$ be a subset of V then S is linearly dependent set if and only if one of the v_i is linear combination of other v_i in S, where $1 \le i, j \le k$.	(07)
	b)	Let $S = \{v_1, v_2\}$ be a subset of vector space $V(F)$ if S is linearly independent then show that $B = \{v_1 + v_2, v_1 - v_2\}$ is also linearly independent.	(04)
	c)	Define: Inner product space.	(03)

(03)